GSO IEC/TS 60479-1:2015

Gulf Standard   Current Edition
· Approved on 03 September 2015 ·

Effects of current on human beings and livestock - Part 1: General aspects

Accident and disaster control
Including emergency evacuations and emergency control systems

GSO IEC/TS 60479-1:2015 Files

GSO IEC/TS 60479-1:2015 Scope

For a given current path through the human body, the danger to persons depends mainly on the magnitude and duration of the current flow. However, the time/current zones specified in the following clauses are, in many cases, not directly applicable in practice for designing measures of protection against electrical shock. The necessary criterion is the admissible limit of touch voltage (i.e. the product of the current through the body called touch current and the body impedance) as a function of time. The relationship between current and voltage is not linear because the impedance of the human body varies with the touch voltage, and data onthis relationship is therefore required. The different parts of the human body (such as the skin, blood, muscles, other tissues and joints) present to the electric current a certain impedance composed of resistive and capacitive components. The values of body impedance depend on a number of factors and, in particular, on current path, on touch voltage, duration of current flow, frequency, degree of moisture of the skin, surface area of contact, pressure exerted and temperature. The impedance values indicated in this technical specification result from a close examination of the experimental results available from measurements carried out principally on corpses and on some living persons. Knowledge of the effects of alternating current is primarily based on the findings related to the effects of current at frequencies of 50 Hz or 60 Hz which are the most common in electrical installations. The values given are, however, deemed applicable over the frequency range from 15 Hz to 100 Hz, threshold values at the limits of this range being higher than those at 50 Hz or 60 Hz. Principally the risk of ventricular fibrillation is considered to be the main mechanism of death of fatal electrical accidents. Accidents with direct current are much less frequent than would be expected from the number of d.c. applications, and fatal electrical accidents occur only under very unfavourable conditions, for example, in mines. This is partly due to the fact that with direct current, the letgo of parts gripped is less difficult and that for shock durations longer than the period of the cardiac cycle, the threshold of ventricular fibrillation is considerably higher than for alternating current. NOTE The IEC 60479 series contains information about body impedance and body current thresholds for various physiological effects. This information can be combined to derive estimates of a.c. and d.c. touch voltage thresholds for certain body current pathways, contact moisture conditions, and skin contact areas. Information about touch voltage thresholds for physiological effects is contained in IEC 61201.

Best Sellers From Oil and Gas Sector

GSO 1180:2021
 
Gulf Standard
Automatic transmission fluid (ATF)
GSO 672:2010
 
Gulf Standard
Liquefied petroleum gases (LPG) for household use( mixture of commerical propane and butane).
GSO 1161:2021
 
Gulf Standard
HLP HYDRAULIC OILS
GSO 477:2011
 
Gulf Standard
Gulf Guide of Standard Specifications for Diesel(Gas Oil)

Recently Published from Oil and Gas Sector

GSO 1785-1:2024
 
Gulf Technical Regulation
Lubricating Oils for Internal Combustion Engines – Part 1: API Classifications of Lubricating Oils for Gasoline and Diesel Engines
GSO ASTM D6377:2024
ASTM D6377:20 
Gulf Standard
Standard Test Method for Determination of Vapor Pressure of Crude Oil: VPCR<inf>x</inf > (Expansion Method)
GSO ISO 15663:2024
ISO 15663:2021 
Gulf Standard
Petroleum, petrochemical and natural gas industries — Life cycle costing
GSO 2752:2024
 
Gulf Standard
REFRIGERATED BUTANE (LIQUEFIED PETROLEUM GAS)